Heterologous overexpression of sfCherry fluorescent protein in Nannochloropsis salina

نویسندگان

  • Nam Kyu Kang
  • Gang-Guk Choi
  • Eun Kyung Kim
  • Sung-Eun Shin
  • Seungjib Jeon
  • Min S. Park
  • Ki Jun Jeong
  • Byeong-ryool Jeong
  • Yong Keun Chang
  • Ji-Won Yang
  • Bongsoo Lee
چکیده

Oleaginous microalgae of the Nannochloropsis genus are considered excellent candidates for biofuels and value-added products owing to their high biomass productivity and lipid content. Here, we report the first overexpression and detection of a heterologous sfCherry fluorescent protein in Nannochloropsis salina in order to develop a transformation toolbox for future genetic improvements. Particle bombardment was employed for transformation, and expression of Shble under the control of TUB and UEP promoters, cloned from N. salina, was used to confer resistance to Zeocin antibiotics, resulting in 5.9 and 4.7 transformants per 108 cells, respectively. Stable integration of the markers into the genome was confirmed using a restriction enzyme site-directed amplification (RESDA) PCR. The expression of sfCherry fluorescent protein was confirmed by Western blot analysis and confocal microscopy. These results suggest new possibilities of efficient genetic engineering of Nannochloropsis for the production of biofuels and other biochemicals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium

Nannochloropsis salina was grown on a mixture of standard growth media and pre-gasified industrial process water representing effluent from a local biogas plant. The study aimed to investigate the effects of enriched growth media and cultivation time on nutritional composition of Nannochloropsis salina biomass, with a focus on eicosapentaenoic acid (EPA). Variations in fatty acid composition, l...

متن کامل

Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina

BACKGROUND Microalgae are considered promising alternative energy sources because they consume CO2 and accumulate large amounts of lipids that can be used as biofuel. Nannochloropsis is a particularly promising microalga due to its high growth rate and lipid content, and the availability of genomic information. Transcription factors (TFs) are global regulators of biological pathways by up- or d...

متن کامل

Culture and biofuel producing efficacy of marine microalgae Dunaliella salina and Nannochloropsis sp

Shenbaga Devi, A., P. Santhanam, V. Rekha, S. Ananth, B. Balaji Prasath, R. Nandakumar, S. Jeyanthi and S. Dinesh Kumar Culture and biofuel producing efficacy of marine microalgae Dunaliella salina and Nannochloropsis sp. J. Algal Biomass Utln. 2012, 3 (4): 38–4 Abstract Biodiesel from oil crops, waste cooking oil and animal fat cannot realistically satisfy even a small fraction of the existing...

متن کامل

Heterotrophic cultivation of Nannochloropsis salina for enhancing biomass and lipid production

Response surface methodology (RSM) was used to enhance the biomass and lipid content in Nannochloropsis salina due to its economic importance. Preliminary screening results revealed that the heterotrophically cultivated N. salina with various carbon and nitrogen sources yielded higher biomass (0.91 ± 0.0035 g/L) and lipid content (37.1 ± 0.49 mg/L) than that of the photoautotrophical cultivatio...

متن کامل

Increased lipid production by heterologous expression of AtWRI1 transcription factor in Nannochloropsis salina

BACKGROUND Genetic engineering of microalgae is necessary to produce economically feasible strains for biofuel production. Current efforts are focused on the manipulation of individual metabolic genes, but the outcomes are not sufficiently stable and/or efficient for large-scale production of biofuels and other materials. Transcription factors (TFs) are emerging as good alternatives for enginee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015